
K I N E T I C S  O F  H E A T  R E L E A S E  I N  T H E  C O N D E N S E D  P H A S E  

O F  P Y R O X Y L I N  A T  E L E V A T E D  T E M P E R A T U R E S  

V. V. A l e k s a n d r o v  a n d  S. S. K h l e v n o i  

The pu lsed  c a l o r i m e t r i c  method developed by the authors  has been used to invest igate  the k ine t ics  of 
heat r e l e a s e  in the condensed phase  of py roxy l in  at t e m p e r a t u r e s  of 220-300 ~ C. The heat yield and p e r -  
centage d i s p e r s i o n  have been m e a s u r e d  as a function of t e m p e r a t u r e .  On the b a s i s  of an extens ive  c o m -  
p a r i s o n  of the ava i lab le  data,  an ac t iva t ion  energy  E = 42 k c a l / m o l e  and p reexponen t i a l  z = 1016~ sec -1 a r e  
p roposed  as most  r e l i a b l e  for  the ini t ia l  s tage of pyroxy l in  decompos i t ion  on the t e m p e r a t u r e  in terva l  70- 
300 ~ C. 

Most s tudies  [1] of the k ine t ics  of t h e r m a l  decompos i t ion  of n i t roce l lu lose  (NC) have been made at 
t e m p e r a t u r e s  below 200 ~ C. The object  of the e a r l y  inves t iga t ions  was to de t e rmine  the chemicaI  s t ab i l i ty  
of NC under  l o n g - t e r m  s to rage  condit ions and, accord ing ly ,  they were conducted ( insofar  as the sens i t iv i ty  
of the ex is t ing  methods p e r m i t t e d  ) at the lowest  poss ib l e  t e m p e r a t u r e .  The upper  t e m p e r a t u r e  l imi t  was 
e s t ab l i shed  by the deve lopment  of t h e r m a l  explosion.  In these  invest igat ions  the t e m p e r a t u r e  did not e x -  
ceed 155-160 ~ C. 

Compara t i ve ly  r ecen t ly  the t e m p e r a t u r e  was r a i s e d  to 190 ~ C [2] (by inves t igat ing NC f i lm 2-3 p 
thick us ing [R s p e c t r o s c o p y  and a quar tz  balance) and to 200 ~ C [3] ( thermal  decompos i t ion  of NC in iner t  
solvents) .  

Because  of technica l  d i f f icul t ies  the re  have been no d i r ec t  m e a s u r e m e n t s  of the decomposi t ion  k ine t -  
ics  of NC above 200 ~ C. Only theo re t i ca l  va lues  of the heat r e l e a s e  r a t e ,  based  on ignit ion lags and c r i t i c a l  
t e m p e r a t u r e s  m e a s u r e d  under  cont ro l led  condit ions [4], have been obtained.  

We have now invest igated the k ine t ics  of t he rma l  decompos i t ion  of pyroxyl in  (12.0-12.4% N) above 
200 ~ C on a spec ia l  pulse  c a l o r i m e t e r  [5]. The pos s ib l e  effect  of g a s - p h a s e  r eac t ions  was e l imina ted  by 
conducting the expe r imen t s  in a vacuum (0.05-0.5 mm Hg)~ Most of the expe r imen t s  were  p e r f o r m e d  on 
f i lm 0.5 p -< 6 -< 2 p thick, which gave a suff ic ient ly  s t rong useful  s ignal  as compared  with the noise level .  
At tempts  to use t h i cke r  f i lms (10 p or  more)  showed that under  these  condit ions it is not poss ib le  to m a i n -  
ta in  un i fo rm decompos i t ion ,  despi te  the fact that the e xpe r i m e n t a l  t e m p e r a t u r e  was much lower than the 
c r i t i c a l  t e m p e r a t u r e  ca lcu la ted  f rom the equat ions of t h e r m a l  explos ion  theory .  Individual  f i v e - m i c r o n  
t he rmocoup le s ,  bonded [5] to a l a y e r  of py roxy l in  10-15 p thick, r e g i s t e r  "blips" at a t e m p e r a t u r e  of 220- 
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Fig. 1. Readings of individual t he rmoeoup le s  
bonded by a s tandard  number  [5] to a l a y e r  of p y -  
roxyl in  15 p thick: 1, 2, 3) thermocouple  numbers .  

230 ~ C (Fig.  1), which indicate  that the s t a t i on -  
a ry  flow of the r eac t i on  is d i s turbed .  

The r ea son  for the b l ips  was d i s cove red  
upon r ap id ly  cooling the p l a t e s ,  on which the p y -  
roxy l in  was mounted, a f te r  pulsed  heating to the 
same  (~230 ~ C) t e m p e r a t u r e .  Bubbles of "foam" 
up to 1 mm in d i a m e t e r  a re  c l e a r l y  v is ib le  in 
the photograph of one such pla te  p r e sen t ed  in 
Fig. 2. The height of the l a rge  bubbles  above the 
su r face  of the p la te  r eaches  ~0.5 mm. In a pho-  
tograph  of an en la rged  sma l l  a r e a  of the foam 
(Fig.  3), apar t  f rom the bubbles  mentioned 
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Fig. 2. Photograph of "frozen" 

foam in pyroxylin. Fig. 3. Photomicrograph of part of the frozen foam. 

above, it is also possible to distinguish a large number of small bubbles (diameter 30-150 p or less). Such 

bubbles and cracks can also be seen in the walls of the large bubbles. Apparently, the cracks in the film 

are formed during hardening as a result of rapid cooling. Visual observations showed that at N220 ~ C the 

pyroxylin becomes liquid. This is confirmed by the readings of the elastic prestressed five-micron ther- 

moeouples, which lose contact with the film (5 = 1 - I0 #) at ~220 ~ C. At the same time considerable gas 

release is recorded by a special tunsten vacuum gauge. 

Liquefaction of NC before ignition was previously noted in [6]. The appearance of bubbles at the be- 

ginning of the vigorous decomposition associated with the autoignition of pyroxylin in a vacuum was re- 

ported in [7]. 

When the thickness of the film is reduced to HI #, it is not possible to freeze the foam, and the ther- 

mocouples cease to register blips at all the temperatures investigated. The above experiments with 

"quenching" showed that foaming may increase the effective thickness of the layer of pyroxylin by 10-30 

times. Consequently, a micron film of pyroxylin may be converted into a layer of foam 10-30 t~ thick. It is 

easy to see from the equations of thermal explosion theory that for (~ = 30 p the critical temperature is 

270-300 ~ C for the kinetic constants used in [5]. Accordingly, there is reason to suppose that there will be 
no blips at initial film thicknesses of less than 1 /~~ 

- -  ~~ 

o 

ZBO 

z30 

fBO 
0.2 O# 

Fig. 4. Expe r imen t a l  
cu rves  f rom one of the 
c a l o r i m e t r i c  e x p e r i -  
ments :  1) amount of heat 
r e l e a s e d  in the condensed 
phase ,  2) t e m p e r a t u r e  
va r i a t i on  accord ing  to the 
read ings  of five t h e r m o -  

couples .  
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Fig. 5. Amount of heat r e -  
l eased  in the eonsensed  p h a s e  
as a function of the e x p e r i m e n -  
ta l  t e m p e r a t u r e  (the t e m p e r a -  
ture  at the instant  c o r r e s p o n d -  
ing to Q = 0.5 Qk was taken as 

the r e f e r e n c e  t e m pe r a t u r e . )  
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Fig. 6. Temperature depen- 

dence of the yield of precipi- 
tate during the thermal de- 
composition of NC: i) 13.1% 
N [9], 2) 13.4% N [I0], 3) 12~ 

N [11]. 
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Fig .  7. R a t e s  of hea t  r e l e a s e  in the c o n -  
d e n s e d  p h a s e  for  v a r i o u s  t e m p e r a t u r e s .  
R e s u l t s  of  m e a s u r e m e n t s :  1) Q = 5 c a l /  
g, 2) Q = 25 c a l / g ,  3) Q = 50 c a l / g ;  
po in t s  4) Q = 5-50 k c a l / g  [12]; l i ne s  5) 
[4], 6) [13], 7) c a l c u l a t e d  by  l e a s t  
s q u a r e s  f r o m  p o i n t s  1, 2, 3. 

A t y p i c a l  k ine t i c  c u r v e  for  the  amount  of hea t  r e -  
l e a s e d  in the  c o n d e n s e d  p h a s e  at a p y r o x y l i n  t e m p e r a t u r e  
of  ~300 ~ C is  p r e s e n t e d  in Fig .  4. The to ta l  amount  of 
heat  m e a s u r e d  in th i s  e x p e r i m e n t  Qk = 108 c a l / g .  I ts  
t e m p e r a t u r e  d e p e n d e n c e  is p r e s e n t e d  in Fig.  5. 

As the  t e m p e r a t u r e  r i s e s ,  the  r e a c t i o n  e n e r g y  d e -  
c r e a s e s  to a va lue  c o n s i s t e n t  with the r e s u l t s  of [7] (Qk = 
80 c a l / g  for  f l a m e l e s s  c o m b u s t i o n ,  when the  s u r f a c e  t e m -  
p e r a t u r e  ~300 ~ C; c a l o r i m e t r i c  m e a s u r e m e n t s  of  the  a u -  
t o ign i t i on  p r o c e s s  in a v a c u u m  gave  v a l u e s  Qk = 90-140 
c a l / g ) .  

A f t e r  the e x p e r i m e n t s  a y e l l o w i s h  d e p o s i t  [7, 8] was 
o b s e r v e d  in the  cold  p a r t s  of the  a p p a r a t u s .  Spec ia l  e x -  
p e r i m e n t s ,  in which  the c a l o r i m e t r i c  p a c k  with the  p y -  
r o x y l i n  was s u r r o u n d e d  by  b r a s s  foi l  s c r e e n s  showed tha t  
at a p a c k  t e m p e r a t u r e  ~300 ~ C, 33 ~: 5% and 24 ~ 4 % b y  
weight  of the  s t a r t i n g  p y r o x y l i n  is  d e p o s i t e d  on t h e  s c r e e n  
s c r e e n s  at  T = 300 ~ C. When the o u t s i d e  s u r f a c e s  of  the  
p l a t e s  a r e  coa t ed  with p y r o x y l i n ,  the  f r a c t i o n  d e p o s i t e d  on 
the  s c r e e n s  is  s t i l l  33% at T = 300 ~ C and 30 at 230-240 ~ 
C. 

The p l a t e s  of the c a l o r i m e t r i c  p a c k  r e m a i n  c o v e r e d  
with a d a r k  b r o w n  d e p o s i t ,  whose  y i e l d  d e c r e a s e s  a l m o s t  l i n e a r l y  wi th  i n c r e a s e  in t e m p e r a t u r e ,  as  m a y  be 
judged f r o m  Fig.  6, which a l s o  p r e s e n t s  the  p u b l i s h e d  d a t a  for  l o w e r  t e m p e r a t u r e s  [9, 11]. It was  found 
tha t  the  s u m  of  the  d e p o s i t s  on the  s c r e e n  and the  c a l o r i m e t r i c  p l a t e s  is  a l m o s t  independen t  of the  s i de  of 
the  p l a t e  on which  the p y r o x y l i n  is  d e p o s i t e d  and is  equa l  to 

36 4- 1,5% at T =  300 ~ 
40 4- 1.5% at T = 230 --  240~ 

F r o m  d a t a  on the p y r o x y l i n  f r a c t i o n  c o l l e c t e d  an the co ld  s c r e e n s  ( " p e r c e n t a g e  d i s p e r s i o n "  [7]) it is  
p o s s i b l e  to m a k e  a r o u g h  e s t i m a t e  of  the  amoun t  of heat  that  would be r e l e a s e d  in the  condensed  p h a s e  if 
a l l  the  p y r o x y l i n  w e r e  c o n v e r t e d  into g a s e o u s  p r o d u c t s  (as in [7]); it was found tha t  

l i0 170 
Q* ~ 0.67 ---- 160cal/g at 300 ~ C, Q*~ 0.76 -~ 220cal/g at 220--240 ~ C �9 

In the  c a s e  of f l a m e l e s s  c o m b u s t i o n  of  p y r o x y l i n  a f t e r  i gn i t i on  in a v a c u u m  [7] the  f r a c t i o n  of m a t e -  
r i a l  d i s p e r s e d  was 70% ( i . e . ,  30% g r e a t e r  t han  in our  e x p e r i m e n t s . )  Obv ious ly ,  the  r e a s o n  fo r  th i s  is to be 
found in the  fac t  tha t  in [7] the  p y r o x y l i n  s p e c i m e n s ,  0 .5 -1  m m  th ick ,  w e r e  hea ted  a l m o s t  u n i f o r m l y  to the  
au to ign i t i on  t e m p e r a t u r e ,  the d e c o m p o s i t i o n  r e a c t i o n  c o v e r e d  the e n t i r e  v o l u m e  of the  s p e c i m e n ,  and the 
g a s e o u s  r e a c t i o n  p r o d u c t s  e s c a p e d  l e s s  e a s i l y  than  in o u r  e x p e r i m e n t s ,  in which,  a s  a l r e a d y  me n t ioned ,  
l a y e r s  0 .5 -2  p t h i c k  w e r e  e m p l o y e d .  

The  " f r e e z i n g "  e x p e r i m e n t s  s u g g e s t  tha t  in p y r o x y l i n  c o m b u s t i o n  the t h i c k n e s s  of the  r e a c t i o n  zone 
is not g r e a t e r  t han  10 # .  T h e r e f o r e  u n d e r  c o m b u s t i o n  cond i t ions  the r e a c t i o n  p r o d u c t s  p r o b a b l y  e s c a p e  i n -  
to the  gas  p h a s e  m o r e  e a s i l y  than  in  the  p y r o x y l i n  au to ign i t i on  e x p e r i m e n t s  d e s c r i b e d  in [7], so tha t  the  
f r a c t i o n  d i s p e r s e d  should  be  c l o s e r  to the  va lue  ob ta ined  in ou r  e x p e r i m e n t s .  

Th i s  c o n c l u s i o n  is  c o n f i r m e d  by  the  r e s u l t s  of [8], in which  the  y i e l d  of so l id  m a t t e r  c o l l e c t e d  on the 
cold  w a l l s  of the  r e a c t i o n  v e s s e l  d u r i n g  the  c o m b u s t i o n  of th in  w a f e r s  of NC unde r  v a c u u m  c ond i t i ons  p = 
1-2 m m  Hg was only  30-50%. A c c o r d i n g l y ,  it was c o n s i d e r e d  d e s i r a b l e  to make  a d e t a i l e d  s tudy  of  the  d e -  
p e n d e n c e  of  the  f r a c t i o n  of  p y r o x y l i n  d i s p e r s e d  on the cond i t i ons  in the  r e a c t i o n  zone.  

The r e a c t i o n  e n e r g y  of 500 c a l / g  m e a s u r e d  in a v a c u u m  at t e m p e r a t u r e s  of 150-165 ~ C [12] e v i d e n t l y  
i nc ludes  a s t r o n g  c o n t r i b u t i o n  f r o m  the s e c o n d a r y  r e a c t i o n s  b e t w e e n  the p r i m a r y  g a s e o u s  p r o d u c t s  and the  
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s ta r t ing  pyroxyl in  and p r i m a r y  condensed products .  Unfor tunate-  
ly, the authors  of [12] do not s ta te  the p r e s s u r e  at which the 
m e a s u r e m e n t s  were  made.  

By different ia t ing kinetic curves  of the type shown in Fig. 
4 we obtained values of the ra te  of heat r e l e a se  for  var ious  t e m -  
p e r a t u r e s  and degrees  of react ion.  As a m e a s u r e  of the degree  of 
reac t ion  we used the amount of heat r e l eased  up to a given t ime.  
Clear ly ,  s ince the p r o c e s s  of d i spe r s ion  is pa ra l l e l  to, or ,  m o r e  
accura te ly ,  a consequence of the chemica l  reac t ion ,  the initial 
sect ion of the exper imen ta l  heat r e l e a s e  curve  should give the 
g rea t e s t  re l iabi l i ty  in de te rmin ing  the kinetic law. The same  
sect ion is the most  impor tant  in connection with the development  
of the ignition p r o c e s s  and s t eady - s t a t e  corrbust ion.  

The r e su l t s  of such an analys is  for three  degrees  of r e a c -  
tion (Q = 5, 25, 50 cal /g)  a re  p re sen ted  in Fig. 7. It follows f r o m  
the graph that the exper imenta l  points cor responding  to Q = 5 
c a l / g  lie below those cor responding  to Q = 25 and 50 ca l /g ,  which 

indicates that the p r o c e s s  is autocatalyt ic .  This has a l ready  been pointed out by numerous  inves t iga tors  
[1, 6, 9-12]. Within the l imits  of s c a t t e r  of the exper imen ta l  data  the initial s tage (up to Q = 50 ca l / g ,  o r  
~30% at 220 ~ C and ~50% at 300 ~ C of the total  amount of heat r e l ea sed  in the condensed phase  at these  
t e m p e r a t u r e s )  can be descr ibed  as a z e r o - o r d e r  reac t ion  with act ivat ion ene rgy  E = 41.2 ~: 1.7 k c a i / m o i e  
and preexponent ia l  lg (z Q*) = 18.84 • 0.70, calculated by the method of leas t  squares .  The s t ra ight  line 
with these  p a r a m e t e r s  has been  plot ted in Fig. 7. Calculat ions for each degree  of reac t ion  taken individu- 
al ly lead to s i m i l a r  values'~ E = 41.84-2.3, 42.4:~2.4, 38.6~:2.3 c a l / m o l e ,  lg(zQ*) = 18.92+0.97, 19.444-0.99, 
17.864-0.94, [zO* ] = cal /g �9 sec for  Q = 5, 25, 50 caL/g, r e spec t ive ly .  Ignition by a hot gas [4] gives  r a t e s  of 
hea t  r e l e a s e  cons i s ten t  with our va lues ,  as a l ready  noted in [5]. 

The r e su l t s  obtained in pyroxyl in  ignition expe r imen t s  us ing a mas s ive  meta l  plate  [13] lie c o n s i d e r -  
ably higher.  Apparent ly ,  under  these  condit ions,  when the e scape  of the secondary  gaseous products  is i m -  
peded,  the contr ibution of the gas -phase  reac t ions  may  be cons iderable .  The r a t e s  of heat r e l e a se  obtained 
f r o m  [ 11], like the total  reac t ion  ene rg ie s ,  lie somewhat  higher than the values obtained by ext rapola t ing  
our s t ra ight  line into the t e m p e r a t u r e  region 15-165 r C. It should be noted that reducing the total  reac t ion  
ene rgy  for  these  points f r o m  500 to 200 ca l /g ,  i .e. ,  by a fac tor  of 2.5 ( h l g Q *  = -0 .4 ) ,  shifts  them so that 
they fall a lmos t  on our s t ra ight  line (or just below it), 

All the known r e s u l t s  on the ra te  of t h e rma l  decomposi t ion  of NC, obtained by var ious  methods under 
var ious  conditions on the t e m p e r a t u r e  in terval  f r o m  70 to 300 ~ C, are  compared  in Fig. 8 in the coo rd i -  
na tes  T - I  [~ -l] and lgw [see- i ] .  Points  1, 2, 3 denote our  expe r imen ta l  data,  4) m a s s  s p e c t r o m e t r y  (vac-  
uum, m a x i m u m  rate)  [14], 5) initial r a t e  (i.r.) of heat r e l e a s e  in vacuum [12], 6) i . r .  of gas fo rmat ion  in 
vacuum [1], 7) i . r .  of fo rmat ion  of condensing gases  in vacuum [1], 8) t h e r m o g r a v i m e t r y  in vacuum (i.r.) 
[1], 9) ir  of fo rmat ion  of difficulty condensing gases  (in vacuum) [1]; l ines 10) i .r .  of gas fo rmat ion  f r o m  
solutions in inert  solvents  [3], 1D t h e r m o g r a v i m e t r y  (vacuum) [2], 12) IR spec t roscopy  {in vacuum, i .r .)  
[2], 13) t h e r m o g r a v i m e t r y  in vacuum (i.r.) [2], 14) i . r .  of heat r e l e a se  and gas r e l e a s e  in a i r  [12], 15) 
[1], 16) i .r .  of gas r e l e a s e  in the p r e s e n c e  of decomposi t ion  p roduc t s  [1], 18) i . r .  of spli t t ing off ni t rogen,  
t h e r m o g r a v i m e t r y  in a s t r e a m  of CO 2 [9], 19) shaded region,  enclosing 12 exper imen ta l  curves  obtained 
in vacuum by means  of IR spec t roscopy  and t h e r m o g r a v i m e t r y  [2]. 

It is c l ea r  f r o m  the graph that all the data a re  grouped within a single s t r ip .  The data that deviate 
mos t  f r o m  the cen te r  of the s t r ip  a r e  ce r t a in  r e su l t s  re la t ing  to loss  of weight [2], the yield of difficulty 
condensing gases  [1], data  on decomposi t ion in inert  solvents  [3], and the r e su l t s  of a m a s s  s p e c t r o m e t r y  
study [14]. As for  the la t t e r ,  the i r  exaggera ted  values are  pe r f ec t l y  unders tandable ,  s ince they r e p r e s e n t  
the m a x i m u m  r a t e s  of r e l e a s e  of gas with m a s s  30 (where the kinetic curves  a re  c l ea r ly  autocatalyt ie  in 
cha rac te r ) .  The s t ra igh t  line desc r ib ing  our  r e su l t s  (see Fig. 7) at Q* = 200 c a l / g  p a s s e s  c lose  to the cen -  
t e r  of the s t r ip ,  deviat ing f r o m  it somewhat  in the region of 70 ~ C. The total i ty  of the exper imenta l  data  is 
desc r ibed  by s t ra igh t  line 20 with p a r a m e t e r s  z = 10 i~'9 see -1, E = 42 kca l /mo le .  

These  values a re  cu r r en t ly  the mos t  p robab le  for the t h e r m a l  decomposi t ion  of NC on the t e m p e r a -  
ture  in terval  f r o m  70 to 300 ~ C. 

* As in Russ ian  or iginal  - Publ i sher .  
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